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Lyapunov instability of rigid diatomic molecules in three dimensions

Young-Han Shin, Dong-Chul Ihm, and Eok-Kyun Lee
Department of Chemistry, Korea Advanced Institute of Science and Technology,
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We study the Lyapunov instability of a three-dimensional fluid composed of rigid diatomic molecules by
molecular dynamics simulation. We use center-of-mass coordinates and angular variables for the configura-
tional space variables. The spectra of Lyapunov exponents are obtained for 32 rigid diatomic molecules
interacting through the Weeks-Chandler-Andersen potential for various bond lengths and densities. We show
the general trends and characteristic features of the spectra of the Lyapunov exponents, and discuss the
different contributions between translational and rotational degrees of freedom depending on the density and
the bond length from the calculation of the projection of a certain subspace of the tangent space vectors.
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I. INTRODUCTION

The motion of molecules in a dense fluid shows chao
behavior and sensitive dependence on initial conditio
Their characteristic behaviors come from collisions betwe
molecules and are described by the exponential rates o
vergence or convergence of neighboring phase-space tr
tories, known as the Lyapunov exponents. The sum of
first n Lyapunov exponents describes the divergence or c
vergence rate of ann-dimensional phase-space volume. T
largest Lyapunov exponent was characterized numerically
Benettin, Galgani, and Strelcyn@1#, and a general approac
to the spectrum of the Lyapunov exponents was describe
Shimada and Nagashima@2#. The study of the spectrum o
the Lyapunov exponents through molecular dynamics sim
lation was pioneered by Hoover and Posch@3–7#. Since then,
the Lyapunov instability has been studied for various s
tems, like Lorentz gas@9,10#, XY models@11#, hard disks or
spheres@12,13#, and soft disks or spheres@14–16#. Also
there have been efforts to relate the spectra of the Lyapu
exponents to self-diffusion coefficients@17#, and
Kolmogorov-Sinai entropyhKS defined as

hKS5 (
l i.0

l i ~1!

to thermodynamic entropy@18,19#.
Diatomic molecular fluids show a variety of features co

pared to atomic fluids. Due to additional rotational degre
of freedom, structural properties such as the relaxation p
cess become much more complicated compared to that o
simple fluid. Equilibrium structures of diatomic molecul
fluid, which are shown in terms of site-atom pair-correlati
functions, differ strongly from monoatomic pair-correlatio
functions at the same thermodynamic state. On the o
hand, there is a qualitative similarity in the behavior
density-dependent compressibility factors. In the previo
work by Tildesley and Streett@20#, it was shown that the
equation of state of the hard dumbbell system can be
pressed in the Carnahan-Starling form, the empirical eq
tion of state of the hard sphere system. Also there have b
various efforts to elucidate the rotational diffusion coef
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cients in addition to the translational diffusion coefficien
from the studies of corresponding autocorrelation functio
@21–27#. As molecular systems display a much greater div
sity of phases than simple atomic systems, it will be of
terest in studying dynamical parameters such as Lyapu
exponents to understand the dynamics associated with
tional and translational degrees of freedom for various d
sities and bond lengths. Recently, there has been s
progress in the study of Lyapunov instability in polyatom
molecular systems@28–31,34#. Borzsák, Posch, and Baran
yai @28# studied the spectrum of Lyapunov exponents in
fluid composed of rigid diatomic molecules moving in tw
dimensional space, and Milanovic´, Posch, and Hoover@29#
studied the Lyapunov instability of the two-dimensional ha
dumbbell systems. Calvo calculated the largest Lyapu
exponent of nitrogen clusters@30# and methane clusters@31#
to explain the melting behavior of small molecular cluste
Borzsák and Calvo used Lagrange multipliers and the qua
nion coordinates method, respectively, to fix the bond len
of each molecule. However, due to unavoidable compu
precision errors, bond lengthd or constraint of the quater
nions deviates from the fixed value as the numerical integ
tion progresses. Thus it requires periodic normalization
the bond lengthd or the constraint of the quaternions durin
the iterations. Recently developed rotation-SHAKE ~RSHAKE!
@32#, in which the entire rotation matrix is evolved using th
scheme of McLachlan and Scovel@33#, can be one of the
promising candidates for the calculation of the spectrum
Lyapunov exponents of rigid polyatomic systems if th
method is further developed so that it can be applied for
evaluation of the Lyapunov exponents using the tang
space method.

It seems to be desirable to use the polar angle represe
tion to observe the translational and rotational motion of
individual diatomic molecule separately. Kum, Shin, and L
@34# developed a method for calculating the spectrum
Lyapunov exponents of a fluid composed of two-dimensio
rigid diatomic molecules. This method does not require
riodic rescaling of the bond length that causes drift of t
total energy of the system. However, application of this po
angle representation to the three-dimensional diatomic
lecular fluid requires great care due to the singularity occ
©2001 The American Physical Society06-1
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ring in the equations of motion. We first introduce the cent
of-mass coordinates vector$RW % and two angular variable

$Q,F% and their conjugate momenta$PW ,PQ ,PF% for each
diatomic molecule to describe the motion of the individu
diatomic molecule. To avoid the singularity occurring in t
equations of motion whenQ i is near zero orp, we change
the definitions of the spherical angular variables fromQ i ,
F i to Q i8 , F i8 , or vice versa@21#. This change does no
modify the expression of the center-of-mass Cartesian c
dinates. Therefore the computations of the interatomic for
are independent of the angular definitions. This techni
enables us to evaluate the equations of motion with suffic
accuracy. On the other hand, in the case where the tan
space method is used for the calculation of the Lyapu
exponents, the phase-space coordinates system that de
the initial tangent space vector is not allowed to change d
ing the integration of the propagator obtained from the l
earized equations of motion. This means that we cannot
ply this technique for the calculation of the Lyapuno
exponents. However, this problem was solved by usin
sophisticated integrator.

The remainder of this paper is organized as follows.
Sec. II we briefly describe the numerical methods to evalu
the time evolution of the system composed of rigid diatom
molecules in phase space and in tangent space. In Sec. I
show the results and discussion of the thermodynamical
haviors and the Lyapunov spectra for diatomic molecu
fluid. Finally, conclusions follow in Sec. IV.

II. DESCRIPTION OF THE MODEL

The bulk system that we study is composed ofN rigid
diatomic molecules with periodic boundary conditions. T
i th molecule has a bond lengthdi and massMi . A schematic
representation of the model of diatomic molecules is given
Fig. 1. In this figureRW i denotes the configurational vector
the i th molecular center-of-mass

RW i5~Xi ,Yi ,Zi !
t, ~2!

FIG. 1. Geometry of the model used to simulate homonuc
diatomic fluid.~a! Representation A. Q i is the angle fromZ axis to
the molecular axis andF i is the angle fromX axis to the projection
of the molecular axis on theX-Y plane.~b! Representation B. Q i8 is
the angle fromX axis to the molecular axis andF i8 is the angle
from Y axis to the projection of the molecular axis on theY2Z
plane.
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where the superscriptt refers to the matrix transposition an
Q i andF i denote two angular coordinates of thei th molecu-
lar axis. The Cartesian coordinates vectorrW i ,k of thekth atom
belonging to thei th molecule is

rW i ,k5RW i2~21!k
di

2
SW i , ~3!

wherei 51,2, . . . ,N andk51,2. SW i is a column vector writ-
ten as

SW i5~sinQ i cosF i , sinQ i sinF i , cosQ i !
t. ~4!

Then, the bond lengthdi for the i th molecule di
5urW i ,12rW i ,2u is naturally fixed without using any additiona
constraint.

In this paper, a homogeneous system (di5d and Mi
5M for i 51, . . . ,N) is assumed, and reduced units a
used, for which the Lennard-Jones parameterse ands, and
the molecular massM ~ atomic massm5M /2) are unity
@35#. Then the kinetic energyK of the three-dimensional di
atomic molecular system is the sum of a translational p
and a rotational part, and is written as

K5(
i 51

N S 1

2
MivW i ,cm

2 1
1

2
I i ,cmv i

2D ~5!

5
M

2 (
i 51

N FRẆ i
21S d

2D 2

@Q̇ i
21sin2~Q i !Ḟ i

2#G , ~6!

where vW i ,cm is the center-of-mass velocity of thei th mol-
ecule, I i ,cm is the moment of inertia of a body of massM
about an axis through its center-of-mass, andv i is the angu-
lar speed of thei th molecule.

If the pairwise additive potential functionf(r ) is as-
sumed, the potential energyF can be written as

F5(
i , j

N

(
a,b51

2

f~r i j
ab!, ~7!

where r i j
ab is the distance between theath atom of thei th

molecule and thebth atom of thej th molecule,

r i j
ab5urW i ,a2rW j ,bu. ~8!

The intermolecular potential function that is used in this p
per is the Weeks-Chandler-Andersen~WCA! potential
fWCA(r ) with a cutoff distancer c521/6 @8#,

fWCA~r !5H fLJ~r !11, r ,r c

0, r>r c ,
~9!

where r c is the location of the minimum of the Lennard
Jones potentialfLJ(r )54@(1/r )122(1/r )6#.

Then the LagrangianL of the system composed ofN di-
atomic molecules is

L5K2F ~10!

r

6-2
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and the equations of motion for each molecule are

RẆ i5PẆ i ,

Q̇ i5PQ i
/I,

Ḟ i5
1

I sin2 Q i

PF i
,

PẆ i52
]V

]RW i

ṖQ i
5

cosQ i

I sin3 Q i

PF i

2 2
]V

]Q i
,

ṖF i
52

]V

]F i
, ~11!

where I is the moment of inertia with respect to the ax
perpendicular to the molecular axis that isM (d/2)2. The
term sinQi in Eq. ~11! causes serious numerical errors
computation ofḞ i and ṖQ i

when Q i is nearly 0 orp. To

avoid this difficulty, when sinQi is smaller than 0.1, we
change the definition of the spherical anglesQ i , F i ~repre-
sentation A) to Q i8 , F i8 ~representation B) or vice versa
@Fig. 1# @21#. This transformation can be obtained from t
following relations:

sinQ i cosF i5cosQ i8 ,

sinQ i sinF i5sinQ i8 cosF i8,

cosQ i5sinQ i8 sinF i8 . ~12!

The equations of motion in therepresentation Bare the same
as Eq.~11! except that the prime (8) is inserted in the angula
variables and the angular momenta. Also, since the inter
lecular forces expressed by the diatomic potential model
independent of the angular definitions, the angular mome
and the torques are not modified by this change. This met
keeps the relative variation for total energy below the or
of 1025 during 1.03103 time units and the numerical prec
sion is of the same order as the case of the two-dimensi
diatomic fluid system@34#, where the change of the defin
tion of the angular variables is not necessary. The Run
Kutta method of order four was used for the numerical in
gration of Eq.~11! with a time stepDt* 50.001. At each
time step, the atomic coordinates for each molecule w
obtained from the center-of-mass coordinates and the r
tional angles according to the coordinates transforma
equation, Eq.~3!.

For the evaluation of the Lyapunov exponents, it is use
to represent the state of the system by the 10N-dimensional
state vector GW 5$Xi ,Yi ,Zi ,Q i ,F i ,PXi

,PYi
,PZi

,PQ i
,PF i

%,

where i 51, . . . ,N. The equations of motion@Eq. ~11!# can
be conveniently written by the state vectorGW (t) as follows:
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GẆ ~ t !5GW „GW ~ t !…, ~13!

whereGW „GW (t)… refers to the right-hand side of Eq.~11!. The
solution of Eq.~13! defines the flowGW (t)5F t„GW (0)… in the
phase space. We consider a neighbor trajectoryGW 8(0) dis-
placed fromGW (0) by dGW (0),

GW 8~0!5GW ~0!1dGW ~0!. ~14!

From this equation we can define the tangent vectordW (0),

dW ~0!5 lim
s→0

GW 8~0!2GW ~0!

s
, ~15!

associated with an initial perturbationGW 8(0)2GW (0) from the
reference trajectory in the phase space. Heres is the norm of
the initial perturbationdGW (0). As time goes on, the assoc
ated tangent vector evolves as

dW ~ t !5 lim
s→0

GW 8~ t !2GW ~ t !

s
. ~16!

The stability of the reference trajectory due to the init
infinitesimal perturbation is determined by the change of
magnitude ofdW (t). Consequently,dW (t) may be viewed as a
vector co-moving and co-rotating with the phase flow in t
immediate neighborhood of the phase point. The equati
of motion for dW (t) are obtained by linearizing Eq.~13!

dẆ ~ t !5M „GW ~ t !…dW ~ t !1O„dW 2~ t !…, ~17!

whereM (GW )5]GW (GW )/]GW is the matrix that defines the sta
bility of the phase pointGW . With the time ordering operato
T, the formal solution of Eq.~17! can be expressed as

dW ~ t !5T expF E
0

t

M ~ t8!dt8GdW ~0!. ~18!

Then, the largest Lyapunov exponentl1 is calculated from

l15 lim
t→`

1

t
lnS udW 1~ t !u

udW 1~0!u
D . ~19!

The second largest Lyapunov exponentl2 can be obtained
by adding two neighbor tangent vectors that do not lie on
same plane and calculating the area made by the tan
vectors,

l11l25 lim
t→`

1

t
lnS udW 1~ t !3dW 2~ t !u

udW 1~0!3dW 2~0!u
D

5 lim
t→`

1

t
lnS udW 1~ t !uudW 2

'~ t !u

udW 1~0!uudW 2
'~0!u

D
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TABLE I. The numerical values of the largest Lyapunov exponentl1, the Kolmogorov-Sinai entropy
hKS , the smallest positive Lyapunov exponentl156, and four vanishing exponents (l157, l158, l159, l160!
for various bond lengthsd/s ranging from 0.2 to 1.0 with a fixed number densityr* 50.5. All quantities are
given in reduced units.

d/s 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ra 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0
l1 5.548 5.703 5.741 5.781 5.746 5.648 5.434 5.133 4.12
hKS 15.42 16.90 17.17 16.67 15.60 14.12 12.50 10.92 9.40
l156 0.097 0.105 0.116 0.059 0.062 0.042 0.042 0.026 0.03
l157 0.027 0.016 0.021 0.015 0.018 0.011 0.007 0.009 0.00
l158 0.009 0.007 0.010 0.008 0.009 0.007 0.007 0.008 0.00
l159 0.008 0.005 0.006 0.007 0.008 0.006 0.007 0.007 0.00
l160 0.003 0.005 0.005 0.007 0.007 0.006 0.005 0.005 0.00
u

n
a

d
e
d

he

-
he
ua

e
s
ibe

tio
on
o

g

m
e

us
th

our

ol-
e-
s is

to
ies
nd

ran-

in
dly
1%
era-
i-
.0
y-

l of
on-

nd
, so

ly

al

our
sis-

es,
ntly
nov
5l11 lim
t→`

1

t
lnS udW 2

'~ t !u

udW 2
'~0!u

D
l25 lim

t→`

1

t
lnS udW 2

'~ t !u

udW 2
'~0!u

D , ~20!

whereudW 2
'u is defined asudW 13dW 2u/udW 1u. In this way, the dis-

crete spectrum of the Lyapunov exponentsl1 , . . . ,lNmax

can be obtained successively, whereNmax is the number of
all phase-space variables. In the actual calculations, we
the classical method of Benettinet al. @1# refined by Hoover
and Posch@3–7# that requires continuous orthonormalizatio
to avoid the very small angles between tangent vectors
the exponential divergence ofudW 1(t)u. For this, we assume
that the system is ergodic and the exponents are indepen
of the initial phase pointG(0) and the initial phase-spac
separationsdW (0). TheLyapunov exponents can be ordere
l1>l2>•••>lNmax

, and the whole set is referred to as t
spectrum of the Lyapunov exponents.

The integration of Eq.~17! requires a highly accurate in
tegrator. Our method, which employs two definitions of t
spherical angles depending on the orientation of individ
molecules, is not applicable as the calculation of Eq.~17!,
since during the time averaging process described in Eq.~19!

the tangent vectordW i(t) has to be represented by the sam
spherical angular variables thatdW i(0) is represented by. Thi
can be achieved by transforming all the molecules descr
in representation Bto the representation Aduring the time
averaging processes. However, a straightforward applica
of the Runge-Kutta method of order four for the integrati
of Eq. ~17! cannot produce precise numerical results
Lyapunov exponents due to the singular terms appearin
the matrixM „GW (t)… in Eq. ~17! whenQ is near 0 orp. By
estimating the local truncation error depending on the ti
step size, the magnitude of this numerical error can be k
below a certain prescribed tolerance by automatically adj
ing the time step size in the Runge-Kutta method. In
present work, we found that for the integration of Eq.~17!,
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the adaptive Runge-Kutta-Fehlberg method of order f
keeps the truncation error within a desired precision@36#.

III. RESULTS AND DISCUSSION

We consider a system of 32 interacting diatomic m
ecules moving in a cubic periodic box. The initial arrang
ment of the center-of-mass coordinates of the molecule
set to an fcc structure with the molecular axes chosen
avoid high potential energy and the initial angular velocit
set to zero. The initial values of center-of-mass velocities a
each element of the initial tangent vectors are chosen
domly.

The initial temperature was set sufficiently high to obta
a random configuration. Then velocities were repeate
scaled to adjust to the required temperature 0.7 within a
deviation. Once the required temperature was obtained, it
tions over 5.03102 time units were performed to reach equ
librium. After equilibrium was obtained, iterations over 1
3103 time units were performed to evaluate the thermod
namic data and the Lyapunov exponents. Throughout al
the simulations, we used a microcanonical system that c
serves the total energyE.

The reduced molecular number densityr* 5Ns3/V
5rs3 is varied from 0.2 to 0.5 and the bond lengthd/s is
varied from 0.2 to 1.0 during our simulations. The bo
lengthd describes the anisotropy of the molecular shape
we define the anisotropy-dependent densityra as

ra5
N

V
s2~s1d!, ~21!

where s51 in the present simulation. This is, rough
speaking, the ratio of the occupied volume to the total@28#.

In a system of 10N dimensions, the conservation of tot
energy ~one!, center-of-mass ~three!, total momentum
~three!, and the natural behavior in the flow direction~one!
causes eight Lyapunov exponents to be zero. In Table I,
numerical calculations show that these values are con
tently smaller than 0.02 for a whole range of densiti
whereas the smallest positive exponents are still significa
larger than zero. Table I also includes the largest Lyapu
6-4
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TABLE II. Thermodynamic quantities characterizing a microcanonical system of 500 diatomic mole
for various bond lengthsd/s ranging from 0.2 to 1.0 with a fixed number densityr* 50.5. All the quantities
are given in reduced units.^K& is the average kinetic energy per particle,^V& is the average potential energ
per particle,E is the total energy,T is the temperature, andTa is the temperature ofa component.

d/s 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ra 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0
^V& 0.286 0.383 0.510 0.665 0.870 1.116 1.404 1.722 2.04
E 2.036 2.139 2.275 2.419 2.630 2.873 3.160 3.481 3.80
kBT 0.700 0.702 0.706 0.702 0.704 0.703 0.702 0.704 0.70
kBTX 0.699 0.703 0.706 0.701 0.704 0.703 0.702 0.703 0.70
kBTY 0.699 0.701 0.706 0.702 0.704 0.703 0.702 0.703 0.70
kBTZ 0.699 0.703 0.704 0.700 0.703 0.702 0.701 0.704 0.60
kBTQ 0.700 0.703 0.707 0.701 0.706 0.704 0.703 0.704 0.70
kBTF 0.702 0.703 0.707 0.703 0.705 0.704 0.704 0.704 0.70
.9
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exponentl1 and the Kolmogorov-Sinai entropyhKS for nine
bond lengthsd/s equal to 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0
and 1.0 with a fixed number densityr* 50.5. All the quan-
tities are given in reduced units. The thermodynamic inf
mation of the corresponding systems is given in Table
The velocities were repeatedly rescaled to keep the ave
kinetic energy of molecules equal to 1.75, which correspo
to 0.35 for each translational and rotational degrees of fr
dom. Throughout all of the simulations, as is shown in Ta
II, the total kinetic energy remains constant and the equip
tition shows little deviation from the targeted value.

Figures 2~a!–~d! show the positive branches of the fu
spectra of Lyapunov exponents for various bond lengthsd/s
ranging from 0.2 to 1.0. Due to the Smale pairing symme
for symplectic systems, the negative branch is obtained
reversing the sign of the positive branch. The indexl num-
bers the exponents. In a regime of relatively low anisotro
dependent density, due to the large relative weight of ex
nents in the middle of indexl, the spectrum of Lyapunov
exponents shows a characteristic convex feature. As
anisotropy-dependent density increases, the shape of

FIG. 2. Positive branch of the spectrum of Lyapunov expone
for 32 body system.r* is the number density andl numbers the
exponents.d is given in the units of diameters andl is in units of
(e/ms2)1/2. ~a! r* 50.2, ~b! r* 50.3, ~c! r* 50.4, and ~d! r*
50.5.
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spectrum changes from convex to concave@15#.
In an earlier work by Tildesley and Streett@20#, they cal-

culated compressibility factors for hard dumbbell fluid, a
showed that the equation of state can be well fitted to
Carnahan-Starling form with the coefficients, in this ca
dependent on the elongation of the hard dumbbell. Here
examine physical meaning of the anisotropy-dependent d
sity ra from another point of view. In Fig. 3, we present th
compressibility factors obtained from the calculation of th
modynamic pressure for the diatomic molecular system w
N5500 for variousra . The solid line represents the mod
fied Carnahan-Starling equation@37# for a simple fluid inter-
acting through the WCA potential, which is written as

z5
P

rkBT
5

11ah1bh21ch31dh41eh51 f h6

123h13h21gh3
,

~22!

ts

FIG. 3. Open circles are the compressibility factors of the
atomic molecular fluid with respect to the anisotropy-depend
density and the solid line represents the Carnahan-Starling equ
modified by Hall for a simple fluid with the WCA potential. Th
relationship between the effective density and the anisotro
dependent density is shown by solid circles. The dashed line is
linear least squares fitting between these two quantitiesre

51.17ra).
6-5
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where a521.047, b51.018, c523.011, d51.017, e
51.754, f 50.01511,g520.9586, andh is the reduced
number densityrs3. The open circles represent the com
pressibility factors for diatomic molecular fluid, and in th
case, h becomes the anisotropy-dependent densityra

@5rs2(s1d)#. The characteristic behavior ofP/rkBT of
the diatomic molecular system has similar patterns to tha
soft sphere system with WCA potential. Furthermore by
fining effective densityre as 1.17r, we found that the equa
tion of state for the diatomic molecular system as a funct
of re can be well fitted to the empirical equation of the sta
of simple fluid with the WCA potential. In the literature o
hard dumbbells@20#, two different conventions have bee
used to express density in reduced unitsrx3, wherer is the
number density andx is a characteristic length. The first o
these takes, as the characteristic length, the atomic diam
s and the second takes the diameter of a sphere havi
volume equal to that of the hard dumbbell. On the oth
hand, according to our study the effective density defin
from the comparison of the equation of state between sim
fluid and diatomic molecular fluid is consistently larger th
the anisotropy-dependent density. This means that the e
tive volume of a diatomic molecule is larger than the volum
defined bys of the WCA potential and the bond lengthd.

Next, the largest Lyapunov exponent and t
Kolmogorov-Sinai entropyhKS are shown as a function ofd
for r* 50.5 in Fig. 4. This figure shows a single maximu
that is possibly related the transition from fluid state to so
state as the anisotropy-dependent density increases. The
est Lyapunov exponentl1 decreases aboved/s50.5 and the
maximum of the Kolmogorov-Sinai entropyhKS occurs at
aboutd/s50.4. Recall that, in the case of simple fluid, ea
of hKS and l1 has a single maximum as a function of th
density and the maximum ofhKS is shifted toward lower
density with respect to the location of the maximum forl1.
Such behaviors ofl1 and hKS for simple fluid systems are
also reflected in the diatomic molecular system by ident
ing the anisotropy-dependent density of diatomic molecu
fluid with the number density of simple fluid~see Fig. 5!.
One of the important future works will be to verify wheth
the minor irregularity in the detailed structure can disapp

FIG. 4. The largest Lyapunov exponentl1 and the
Kolmogorov-Sinai entropyhKS as a function ofd/s for r* 50.5. l
andhKS are in units of (e/ms2)1/2.
04110
of
-

n

ter
a

r
d
le

c-

rg-

-
r

r

in the thermodynamic limit or not.
It is instructive to examine the dynamics of the tange

vectors in the subspaces associated with special degre
freedom between two systems have the equal anisotro
dependent density but different bond lengths and num
densities. If we describe the phase space as the product o
center-of-mass configuration spaceQ, the respective momen
tum spacePQ , the angular orientation spaceV, and the as-
sociated angular momentum spacePV , the tangent space i
also decomposed into respective subspacesTQ, TPQ , TV,
and TPV @28#. Then the mean-squared value of the proje
tion of tangent vectordW l ontoTX subspace can be defined

^dW X,l
2 &5^P~X!dW l•P~X!dW l&, ~23!

where X is one of Q, PQ , V, and PV , and P(X) is the
projection operator to theTX subspace. The diagonal matr
with the elementPaa(X) is equal to unity, if thea axis ofdW l
belongs toX, and equal to zero, otherwise. Figure 6 sho
the mean-squared values of the projection of tangent vec
to TX subspacêdW X,l

2 & (X5Q, PQ , V or PV) for two dif-
ferent cases where they have the same anisotropy-depen
density but have different number density and bond leng
l is the index of the total 320 tangent space vectors that s
the tangent space. Notice that, even though an individ
component is not symmetric, the overall patterns are sy
metric with respect to the center. Due to the Hamiltoni
nature of the system, an increase of instability accumula
in one subspace is always accompanied with a decreas
instability in its conjugate subspace. Eight of the Lyapun
exponents vanishes for the reasons given above, so the
respondingdW X,l

2 has no meaning, since Gram-Schmidt o
thogonalization has no ordering effect on the directions
their tangent vectors.

When the system has low anisotropy-dependent den
only a small portion of the mean-squared length ofdW 1 is
contributed from the momentum space. However this va
rises rapidly asra increases. This means that the instabil
of the phase-space trajectory is accumulated in the mom
tum space in high density regions. Furthermore, the con
bution from the angular momentum space increases m

FIG. 5. The largest Lyapunov exponent and the Kolmogor
Sinai entropy as a function ofra .
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rapidly than the contribution from the translational mome
tum space. Figure 6 shows this trend clearly.

The two states that have the same anisotropy-depen
density present different dynamics at molecular level
pending on the bond lengths and the number densities
Fig. 6, the contributions of the tangent vectors toTX sub-
spacê dW X,l

2 & (X5Q, PQ , V or PV) are compared with two
systems having the same anisotropy-dependent density
having the different bond length and the number density.
the systems with relatively lowra , the contribution of̂ dW V,l

2 &
to the instability of the phase-space trajectory is larger t
that of ^dW PV ,l& in relatively low ra and the difference be
tween these two contributions is larger for the systems w
small d as can be seen from the comparisons between F
6~a! and 6~b!. As ra increases, this difference decreases
can be seen in Figs. 6~c! and 6~d!, and for the case ofra

50.8, the contribution of̂ dPV

2 & larger than that of̂ dV
2 & in

the system withd51.0 @compare Figs. 6~e! and 6~f!#. It is a
common feature for diatomic molecular fluid and simp
fluid that P/rkBT and the instability accumulated in the m
mentum space (^dW PQ,1

2 &1^dW PV,1
2 &) increases asra increases.

FIG. 6. Mean-squared values of the projection of tangent v

tors dW l to theTX subspace.~a! ra50.36 (d50.2,r* 50.3), ~b! ra

50.36 (d50.8,r* 50.2), ~c! ra50.60 (d50.5,r* 50.4), ~d! ra

50.60 (d51.0,r* 50.3), ~e! ra50.80 (d50.6,r* 50.5), and~f!
ra50.80 (d51.0,r* 50.4).
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However we have to note that the values ofP/rkBT are
slightly different than each other for a pair of systems th
have the samera . These discrepancies seem to be partly d
to the difference between the number of molecules use
the calculation of thermodynamic pressure and that use
the calculation of Lyapunov exponents. Figure 7 shows
behaviors of the squared length ofdW 1 contributed from trans-
lational momentum space and angular momentum space
function of the bond length for various number densitie
The contribution from the translational momentum space
sensitive to the number density and seems to be satur
reaching a certain maximum value as the anisotro
dependent density increases. On the other hand, the co
bution from the angular momentum space shows roug
linear behavior with bond length and is insensitive to t
number density.

IV. CONCLUSIONS

In this paper, we studied the instability properties
phase-space trajectories for a three-dimensional fluid c
posed of rigid diatomic molecules. Detailed numerical stu
ies of the spectra of Lyapunov exponents, the Kolmogor
Sinai entropy, and the associated tangent space vectors
function of anisotropy-dependent density indicate that
major contributions to the instability of the phase-space
jectory come from the translational degrees of freedom a
in particular, from the translational momentum variable
This is in contrast to the case of two-dimensional diatom
molecular fluid, in which the major contribution to instabilit
comes from the angular-momentum variables@15#. Figure 6
shows that, in general, the major contribution to the posit
Lyapunov exponents, which comes from the translatio
center-of-mass configuration space and the angular orie
tion space, reduces considerably as the anisotropy-depen
density increases but these contributions change quan
tively as bond length becomes different even at the sa
anisotropy-dependent density@Fig. 6~f!#.

Figure 7 shows that the contribution of instability fro
the translational momentum space is sensitive to both

-

FIG. 7. Mean-squared values of the projection of a tangent v

tor dW 1 to the TPQ and TPV subspaces as functions ofd/s for
various number densities.
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number density and the bond length of the molecu
whereas the contribution of instability from the angular m
mentum space seems to be dependent on only the b
length of the molecules.

The maximum of the largest Lyapunov exponentl1 oc-
curs aroundra50.75, whereas the location of the maximu
of the Kolmogorov-Sinai entropyhKS is nearra50.7. Al-
though, for practical reasons, the systems contain only
particles, the influence of the fluid-solid phase transition
the Lyapunov instability and the Kolmogorov-Sinai entro
can be clearly seen. From the comparison of the thermo
namic pressure and the Kolmogorov-Sinai entropy of
atomic molecular fluid with those of simple fluid, we foun
that the anisotropy-dependent density plays a crucial rol
obtain the effective density, and they are linearly prop
hy

ch

04110
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tional to each other. Our numerical method, which uses
coordinates representations to avoid the singularity occur
in the equations of motion combined with the adapti
Runge-Kutta-Fehlberg method of order four, proves tha
gives sufficiently accurate numerical results for t
Lyapunov instability study of the three-dimensional rigid d
atomic molecular system.
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