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Lyapunov instability of rigid diatomic molecules in three dimensions
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We study the Lyapunov instability of a three-dimensional fluid composed of rigid diatomic molecules by
molecular dynamics simulation. We use center-of-mass coordinates and angular variables for the configura-
tional space variables. The spectra of Lyapunov exponents are obtained for 32 rigid diatomic molecules
interacting through the Weeks-Chandler-Andersen potential for various bond lengths and densities. We show
the general trends and characteristic features of the spectra of the Lyapunov exponents, and discuss the
different contributions between translational and rotational degrees of freedom depending on the density and
the bond length from the calculation of the projection of a certain subspace of the tangent space vectors.
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[. INTRODUCTION cients in addition to the translational diffusion coefficients
from the studies of corresponding autocorrelation functions
The motion of molecules in a dense fluid shows chaotid21—27. As molecular systems display a much greater diver-
behavior and sensitive dependence on initial conditionssity of phases than simple atomic systems, it will be of in-
Their characteristic behaviors come from collisions betweenerest in studying dynamical parameters such as Lyapunov
molecules and are described by the exponential rates of diexponents to understand the dynamics associated with rota-
vergence or convergence of neighboring phase-space trajegonal and translational degrees of freedom for various den-
tories, known as the Lyapunov exponents. The sum of thejties and bond lengths. Recently, there has been some
first n Lyapunov exponents describes the divergence or comprogress in the study of Lyapunov instability in polyatomic
vergence rate of an-dimensional phase-space volume. Themolecular system§28-31,34. Borzs&, Posch, and Baran-
Iargest Lyapunov exponent was characterized numerically bya| [28] studied the spectrum of Lyapunov exponents in a
Benettin, Galgani, and Strelcyid], and a general approach fluid composed of rigid diatomic molecules moving in two-
to the spectrum of the Lyapunov exponents was described byimensional space, and MilandyiPosch, and Hoover29]
Shimada and Nagashinid]. The study of the spectrum of studied the Lyapunov instability of the two-dimensional hard
the Lyapunov exponents through molecular dynamics simugumbbell systems. Calvo calculated the largest Lyapunov
lation was pioneered by Hoover and Pog8k7]. Since then,  exponent of nitrogen clustef80] and methane clustef81]
the Lyapunov instability has been studied for various systo explain the melting behavior of small molecular clusters.
tems, like Lorentz gaf9,10], XY models[11], hard disks or  Borzsa and Calvo used Lagrange multipliers and the quater-
spheres[12,13, and soft disks or sphergd4-16. Also  njon coordinates method, respectively, to fix the bond length
there have been efforts to relate the spectra of the Lyapunayf each molecule. However, due to unavoidable computer
exponents to self-diffusion coefficients[17], and  precision errors, bond lengtth or constraint of the quater-

Kolmogorov-Sinai entropyks defined as nions deviates from the fixed value as the numerical integra-
tion progresses. Thus it requires periodic normalization of
hks= E \, (1) the bond lengthd or the constraint of the_quaternions during
\i>0 the iterations. Recently developed rotat®mAKE (RSHAKE)
[32], in which the entire rotation matrix is evolved using the
to thermodynamic entrop}l8,19. scheme of McLachlan and Scovi@83], can be one of the

Diatomic molecular fluids show a variety of features com-promising candidates for the calculation of the spectrum of
pared to atomic fluids. Due to additional rotational degreed.yapunov exponents of rigid polyatomic systems if this
of freedom, structural properties such as the relaxation promethod is further developed so that it can be applied for the
cess become much more complicated compared to that of thevaluation of the Lyapunov exponents using the tangent
simple fluid. Equilibrium structures of diatomic molecular space method.
fluid, which are shown in terms of site-atom pair-correlation It seems to be desirable to use the polar angle representa-
functions, differ strongly from monoatomic pair-correlation tion to observe the translational and rotational motion of an
functions at the same thermodynamic state. On the othandividual diatomic molecule separately. Kum, Shin, and Lee
hand, there is a qualitative similarity in the behavior of[34] developed a method for calculating the spectrum of
density-dependent compressibility factors. In the previous.yapunov exponents of a fluid composed of two-dimensional
work by Tildesley and Streefi20], it was shown that the rigid diatomic molecules. This method does not require pe-
equation of state of the hard dumbbell system can be exdodic rescaling of the bond length that causes drift of the
pressed in the Carnahan-Starling form, the empirical equaotal energy of the system. However, application of this polar
tion of state of the hard sphere system. Also there have beeangle representation to the three-dimensional diatomic mo-
various efforts to elucidate the rotational diffusion coeffi- lecular fluid requires great care due to the singularity occur-
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(@) (b) where the superscriptrefers to the matrix transposition and
0; and®; denote two angular coordinates of ttie molecu-
lar axis. The Cartesian coordinates veator of thekth atom
belonging to thath molecule is

> > iz
Me=Ri—(=1"5S, ()
wherei=1,2,... N andk=1,2. §i is a column vector writ-
ten as
FIG. 1. Geometry of the model used to simulate homonuclear S=(sin®; cosd;, sin®,sind,, cosO,)". (4)

diatomic fluid.(a) Representation A0, is the angle fron¥ axis to

the molecular axis an®; is the angle fronX axis to the projection  Then, the bond lengthd; for the ith molecule d;

of the molecular axis on th¥-Y plane.(b) Representation B9/ is =|f, ,— i 4 is naturally fixed without using any additional

the angle fromX axis to the molecular axis and; is the angle  ~gonstraint.

from Y axis to the projection of the molecular axis on tie-Z In this paper, a homogeneous systethy=(d and M;

plane. =M for i=1,...N) is assumed, and reduced units are
used, for which the Lennard-Jones parametesasd o, and

ring in the equations of motion. We first introduce the centerthe molecular mas#! ( atomic massm=M/2) are unity

of-mass coordinates vectdR} and two angular variables [35]. Then the kinetic energi of the three-dimensional di-

{®,®} and their conjugate momen(ﬁ,P@ Py} for each atomic molecular system is the sum of a translational part

diatomic molecule to describe the motion of the individualand a rotational part, and is written as

diatomic molecule. To avoid the singularity occurring in the N

equations of motion whe®; is near zero orr, we change KZE (EM-J- n EI- w2

the definitions of the spherical angular variables fr@m, < \2 hem s g nhemT

®; to O, ®/, or vice versg[21]. This change does not

modify the expression of the center-of-mass Cartesian coor- M

2

®)

dinates. Therefore the computations of the interatomic forces =
are independent of the angular definitions. This technique
enables us to evaluate the equations of motion with sufficient - . . :

accuracy. On the other hand, in the case where the tange\q’{]ereUivcm.'S the center-of-mass velocity of thieh mol-
space method is used for the calculation of the LyapunO\(?CUk_:"lirCm is the moment of inertia of a body of mass

exponents, the phase-space coordinates system that defirfé%oUt ar:jaxflsththtrr(])ughl Its (fenter-of-mass, ands the angu-
the initial tangent space vector is not allowed to change dur-arlfpﬁe of the mgd(_ac_:u & il f . .
ing the integration of the propagator obtained from the lin- ! the pairwise additive potential functiog(r) is as-

earized equations of motion. This means that we cannot agUMed. the potential energy can be written as

R+

>

=1

d\? . -
> [®i2+Sin2(®i)q)i2]}v ©®)

ply this technique for the calculation of the Lyapunov N2
exponents. However, this problem was solved by using a (D:E (reP), 7)
sophisticated integrator. =i ap=1 Y

The remainder of this paper is organized as follows. In
Sec. Il we briefly describe the numerical methods to evaluatwhereri* is the distance between theth atom of theith
the time evolution of the system composed of rigid diatomicmolecule and thggth atom of thejth molecule,
molecules in phase space and in tangent space. In Sec. Il we

show the results and discussion of the thermodynamical be- rf}B=|ﬂ,a—Fj,ﬁ|. (8
haviors and the Lyapunov spectra for diatomic molecular
fluid. Finally, conclusions follow in Sec. IV. The intermolecular potential function that is used in this pa-

per is the Weeks-Chandler-AndersefWCA) potential

r) with a cutoff distance .=2° [8],
IIl. DESCRIPTION OF THE MODEL bweAr) c 8]

The bulk system that we study is composedNofigid bLa(r)+1, r<re 9)

r =
diatomic molecules with periodic boundary conditions. The Pwer) 0, r=re,
ith molecule has a bond length and mas$; . A schematic _ _ -
representation of the model of diatomic molecules is given invherer is the location of the minimum of the Lennard-

> : — 12__ 6
Fig. 1. In this figureR, denotes the configurational vector of JON€S potentiab,;(r) =4[ (1/r)™—(1/r)7]. ,
theith molecular center-of-mass Th.en the Lagra_nglan of the system composed of di-
atomic molecules is
Ri=(X;,Y;,2)", 2 L=K-® (10
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and the equations of motion for each molecule are

L) =G(T(1), (13)
Ri=Pi, whereG(T'(t)) refers to the right-hand side of E(L1). The
&, =P /I solution of Eq.(13) defines the flow (t) = ®,(I(0)) in the
' v phase space. We consider a neighbor trajecfdr(;O) dis-
1 placed from[*(0) by 8I'(0),

[ D N . N
| sir? 0 I''(0)=T(0)+ 6T (0). (14)
ﬁ,i - ﬂ From this equation we can define the tangent veé(ﬁl),

IR, B} R
5(0)= i r'o-ro 15
o= cos®; , VvV ( )_SI_T) S : (19

Cosile, Y 90y

associated with an initial perturbatidti (0)—I'(0) from the
b v 11 reference trajectory in the phase space. Hdsethe norm of
@ (11 the initial perturbationsT (0). As time goes on, the associ-

ated tangent vector evolves as
where | is the moment of inertia with respect to the axis

perpendicular to the molecular axis that M(d/2)%. The . [/ (t)—T(t)
term sin®, in Eq. (11) causes serious numerical errors in S(t)=Ilim .

computation ofd; and P when ©; is nearly 0 orm. To s=0
avoid this difficulty, when si®; is smaller than 0.1, we  The stability of the reference trajectory due to the initial
change the definition of the spherical angt®s, ®; (repre-  jnfinitesimal perturbation is determined by the change of the

sentation A to ©;, &/ (representation B or vice versa aqnityde ofs(t). Consequentlys(t) may be viewed as a
[Fig. 1] [21]. This transformation can be obtained from the, qqtor co-moving and co-rotating with the phase flow in the

following relations: immediate neighborhood of the phase point. The equations

(16)

sin®; cos®;=cosO/ , of motion for E(t) are obtained by linearizing E¢13)
sin®; sin®;=sin®/ cosd/, S(t)=M(T'(1))8(t) + O(5(1)), 17
cosO;=sin®/ sind’ . (120 whereM(I)=aG(I')/4r is the matrix that defines the sta-

bility of the phase poinf". With the time ordering operator

The equations of motion in thepresentation Bre the same T, the formal solution of Eq(17) can be expressed as

as Eq.(11) except that the prim€e'] is inserted in the angular
variables and the angular momenta. Also, since the intermo- . t .

lecular forces expressed by the diatomic potential model are o()=T ex;{f M(t’)dt’} 58(0). (18
independent of the angular definitions, the angular momenta 0

and the torques are not modified by this change. This metho;l'j

keeps the relative variation for total energy below the order hen, the largest Lyapunov exponentis calculated from

of 10" during 1.0< 10° time units and the numerical preci- R
sion is of the same order as the case of the two-dimensional _i 1 | 81(1)]

. . ) > A= lim —In| = . (19
diatomic fluid systenj34], where the change of the defini- e U1 ]6,(0)]

tion of the angular variables is not necessary. The Runge-
Kutta method of order four was used for the numerical inte-The second largest Lyapunov exponantcan be obtained
gration of Eq.(11) with a time stepAt* =0.001. At each by adding two neighbor tangent vectors that do not lie on the

time step, the atomic coordinates for each molecule wergame plane and calculating the area made by the tangent
obtained from the center-of-mass coordinates and the rotaectors,

tional angles according to the coordinates transformation

equation, Eq(3). o 1 ( |81(t) X 35(1)| )
For the evaluation of the Lyapunov exponents, it is useful Ni+Hho=Ilm —In| ——————
to represent the state of the system by thBl-Himensional o U1]81(0)X 55(0))
state vector ['={X;,Y;,Z;,0;,®;,Px,Py,Pz,Pq,Po}, S
wherei=1, ... N. The equations of motiofEg. (11)] can — lim Eln( |f1(t)||52(t)| )
be conveniently written by the state vectdt) as follows: e U\ ]61(0)]]85(0)]

041106-3



YOUNG-HAN SHIN, DONG-CHUL IHM, AND EOK-KYUN LEE PHYSICAL REVIEW E64 041106

TABLE I. The numerical values of the largest Lyapunov exponeptthe Kolmogorov-Sinai entropy
hks, the smallest positive Lyapunov exponantg, and four vanishing exponenta {7, X 1sg, N159, N160
for various bond lengthd/ o ranging from 0.2 to 1.0 with a fixed number density=0.5. All quantities are
given in reduced units.

dlo 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pa 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

Ny 5.548 5.703 5.741 5.781 5.746 5.648 5.434 5.133 4.127

hks 15.42 16.90 17.17 16.67 15.60 14.12 12.50 10.92 9.406

N 156 0.097 0.105 0.116 0.059 0.062 0.042 0.042 0.026 0.030

N157 0.027 0.016 0.021 0.015 0.018 0.011 0.007 0.009 0.009

158 0.009 0.007 0.010 0.008 0.009 0.007 0.007 0.008 0.007

N1s9 0.008 0.005 0.006 0.007 0.008 0.006 0.007 0.007 0.007

N160 0.003 0.005 0.005 0.007 0.007 0.006 0.005 0.005 0.006

1 |5§(t)| the adaptive Runge-Kutta-F_etherg method of_ order four
=N\, + lim ?In |3L(O)| keeps the truncation error within a desired precigi®i.
t—o 2

Ill. RESULTS AND DISCUSSION

We consider a system of 32 interacting diatomic mol-
ecules moving in a cubic periodic box. The initial arrange-
ment of the center-of-mass coordinates of the molecules is
set to an fcc structure with the molecular axes chosen to
where| 55| is defined agd; x 5,|/|84|. In this way, the dis- avoid high potential energy and the initial angular velocities
crete spectrum of the Lyapunov exponents, ... \y set to zero. The initial values of center-of-mass velocities and

max

can be obtained successively, whétg,, is the number of each element of the initial tangent vectors are chosen ran-
’ X
all phase-space variables. In the actual calculations, we ugomly. o - . .
the classical method of Benettét al. [1] refined by Hoover The initial temperature was set sufficiently high to obtain
and Poscli3—7] that requires continuous orthonormalization @ random configuration. Then velocities were repeatedly
to avoid the very small angles between tangent vectors angf@l€d to adjust to the required temperature 0.7 within a 1%
the exponential divergence 4)5 (t)]. For this, we assume deviation. Once the required temperature was obtained, itera-
1 . 7

that the system is ergodic and the exponents are independ t;ﬂns over 5.0¢ 10" time units were performed to reach equi-
> Sy 90 poner PENAqiSrium. Atter equilibrium was obtained, iterations over 1.0
of the initial phase poinl’(0) and the initial phase-space

SR X 10° time units were performed to evaluate the thermody-
separations5(0). TheLyapunov exponents can be ordered, namic data and the Lyapunov exponents. Throughout all of

Ai=Np=--- =Ny . and the whole set is referred to as the the simulations, we used a microcanonical system that con-
spectrum of the Lyapunov exponents. serves the total enerdy.

The integration of Eq(17) requires a highly accurate in- The reduced molecular number densipf =No®/V
tegrator. Our method, which employs two definitions of the=p o2 is varied from 0.2 to 0.5 and the bond lengthr is
spherical angles depending on the orientation of individualaried from 0.2 to 1.0 during our simulations. The bond
molecules, is not applicable as the calculation of Eg), lengthd describes the anisotropy of the molecular shape, so
since during the time averaging process described ifE).  we define the anisotropy-dependent denpifyas
the tangent vectob;(t) has to be represented by the same

spherical angular variables thé(O) is represented by. This
can be achieved by transforming all the molecules described
in representation Bo the representation Aduring the time
averaging processes. However, a straightforward applicatiofjhere o=1 in the present simulation. This is, roughly
of the Runge-Kutta method of order four for the integrationspeaking, the ratio of the occupied volume to the tp24.

of Eg. (17) cannot produce precise numerical results of |n a system of 18 dimensions, the conservation of total
Lyapunov exponents due to the singular terms appearing iBnergy (one, center-of-mass(threg, total momentum

the matrixM(f(t)) in Eqg. (17) when® is near 0 or. By  (three, and the natural behavior in the flow directicone
estimating the local truncation error depending on the timecauses eight Lyapunov exponents to be zero. In Table I, our
step size, the magnitude of this numerical error can be keptumerical calculations show that these values are consis-
below a certain prescribed tolerance by automatically adjustently smaller than 0.02 for a whole range of densities,
ing the time step size in the Runge-Kutta method. In thewvhereas the smallest positive exponents are still significantly
present work, we found that for the integration of Ej7), larger than zero. Table | also includes the largest Lyapunov

£in (20

1 lz%(t)l)
No=Ilim —In| ——,
? (laé(ml

t—oo

N
pa=y o (0 +d), (21)
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TABLE Il. Thermodynamic quantities characterizing a microcanonical system of 500 diatomic molecules
for various bond lengthd/ o ranging from 0.2 to 1.0 with a fixed number densify=0.5. All the quantities
are given in reduced unitéK) is the average kinetic energy per partige) is the average potential energy
per particleE is the total energyT is the temperature, anfl, is the temperature ok component.

d/lo 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pa 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

(V) 0.286 0.383 0.510 0.665 0.870 1.116 1.404 1.722 2.048
E 2.036 2.139 2.275 2.419 2.630 2.873 3.160 3.481 3.806
kgT 0.700 0.702 0.706 0.702 0.704 0.703 0.702 0.704 0.703
kg Tx 0.699 0.703 0.706 0.701 0.704 0.703 0.702 0.703 0.703
kgTy 0.699 0.701 0.706 0.702 0.704 0.703 0.702 0.703 0.703
kgTz 0.699 0.703 0.704 0.700 0.703 0.702 0.701 0.704 0.602
keTe 0.700 0.703 0.707 0.701 0.706 0.704 0.703 0.704 0.704
kgTo 0.702 0.703 0.707 0.703 0.705 0.704 0.704 0.704 0.705

exponent\; and the Kolmogorov-Sinai entrogy s for nine  spectrum changes from convex to conc@ig].
bond lengthsl/o equal to 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, In an earlier work by Tildesley and Stre¢0], they cal-
and 1.0 with a fixed number densipf =0.5. All the quan-  culated compressibility factors for hard dumbbell fluid, and
tities are given in reduced units. The thermodynamic infor-showed that the equation of state can be well fitted to the
mation of the corresponding systems is given in Table Il.Carnahan-Starling form with the coefficients, in this case,
The velocities were repeatedly rescaled to keep the averagkependent on the elongation of the hard dumbbell. Here we
kinetic energy of molecules equal to 1.75, which correspondsxamine physical meaning of the anisotropy-dependent den-
to 0.35 for each translational and rotational degrees of freesity p, from another point of view. In Fig. 3, we present the
dom. Throughout all of the simulations, as is shown in Tablecompressibility factors obtained from the calculation of ther-
Il, the total kinetic energy remains constant and the equiparmodynamic pressure for the diatomic molecular system with
tition shows little deviation from the targeted value. N=500 for variousp,. The solid line represents the modi-
Figures 2a)—(d) show the positive branches of the full fied Carnahan-Starling equati¢d7] for a simple fluid inter-
spectra of Lyapunov exponents for various bond lengflas  acting through the WCA potential, which is written as
ranging from 0.2 to 1.0. Due to the Smale pairing symmetry
for symplectic systems, the negative branch is obtained by =) 1+an+by’+cp+dy*+en’+1fy°
reversing the sign of the positive branch. The indexum- z= KT
bers the exponents. In a regime of relatively low anisotropy- Pre
dependent density, due to the large relative weight of expo-
nents in the middle of indek the spectrum of Lyapunov
exponents shows a characteristic convex feature. As the
anisotropy-dependent density increases, the shape of th

(22)

1-39+37°+g7°

(®)

2=P/pkyT
Pe

© (@)

FIG. 3. Open circles are the compressibility factors of the di-
atomic molecular fluid with respect to the anisotropy-dependent
density and the solid line represents the Carnahan-Starling equation

FIG. 2. Positive branch of the spectrum of Lyapunov exponentanmodified by Hall for a simple fluid with the WCA potential. The
for 32 body systemp* is the number density andnumbers the relationship between the effective density and the anisotropy-
exponentsd is given in the units of diameter andX is in units of  dependent density is shown by solid circles. The dashed line is the
(e/lma®)Y2. (@) p*=0.2, (b) p*=0.3, (c) p*=0.4, and(d) p* linear least squares fitting between these two quantities (
=0.5. =1.17p,).
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FIG. 4. The largest Lyapunov exponenX,; and the
Kolmogorov-Sinai entropyg s as a function ofl/ o for p* =0.5. \
andhgs are in units of €/mo?)*2,

FIG. 5. The largest Lyapunov exponent and the Kolmogorov-
Sinai entropy as a function gf, .

in the thermodynamic limit or not.
where a=—1.047, b=1.018, c=-3.011, d=1.017, e It is instructive to examine the dynamics of the tangent
=1.754, f=0.01511,9=—0.9586, and7 is the reduced vectors in the subspaces associated with special degrees of
number densitypo®. The open circles represent the com-freedom between two systems have the equal anisotropy-
pressibility factors for diatomic molecular fluid, and in this dependent density but different bond lengths and number
case, n becomes the anisotropy-dependent density densities. If we describe the phase space as the product of the
[=pa?(a+d)]. The characteristic behavior &/pkgT of  center-of-mass configuration spa@gethe respective momen-
the diatomic molecular system has similar patterns to that ofum spaceP, the angular orientation spa€g, and the as-
soft sphere system with WCA potential. Furthermore by desociated angular momentum spag, the tangent space is
fining effective densityp, as 1.1p, we found that the equa- also decomposed into respective subspdd@s TPq, T(,
tion of state for the diatomic molecular system as a functiorand TP, [28]. Then the mean-squared value of the projec-

of pe can be well fitted to the empirical equation of the stateyjon of tangent vectos; onto TX subspace can be defined as
of simple fluid with the WCA potential. In the literature on

hard dumbbelld20], two different conventions have been 52 N=(PX) - P(X) & 23
used to express density in reduced upits, wherep is the (8x))=(PX)é-PX) 1), @3

number density ang is a characteristic length. The first of where X is one ofQ, Pg, Q, and Pq, and P(X) is the
these takes, as the characteristic length, the atomic diametgfojection operator to th& X subspace. The diagonal matrix
o and the second takes the diameter of a sphere having g\, e elemen®, . (X) is equal to unity, if thex axis of &
volume equal to that of the hard dumbbell. On the other, elongs toX, andagqual to zero, othervx;ise. Figure 6 sr|10ws

hand, accordmg_ to our study th? effective density defme he mean-squared values of the projection of tangent vectors
from the comparison of the equation of state between simple

i > _
fluid and diatomic molecular fluid is consistently larger thant© TX subspacg oy ) (X=Q, Pq, Q or Pq) for two dif-

the anisotropy-dependent density. This means that the effefrent cases where they have the same anisotropy-dependent
tive volume of a diatomic molecule is larger than the volumedensity but have different number density and bond lengths.
defined by of the WCA potential and the bond length | is the index of the total 320 tangent space vectors that span
Next, the largest Lyapunov exponent and thethe tangent space. Notice that, even though an individual
Kolmogorov-Sinai entropyics are shown as a function of ~ COMPoNent is not symmetric, the overall patterns are sym-
for p* =0.5 in Fig. 4. This figure shows a single maximum metric with respect to the center. Due to the Hamiltonian
that is possibly related the transition from fluid state to soligatUre of the system, an increase of instability accumulated

state as the anisotropy-dependent density increases. The lat§-On€ _sut_aspace IS always accompanl_ed with a decrease of
est Lyapunov exponeit; decreases abow# o= 0.5 and the instability in |ts_ conjugate subspace. E_|ght of the Lyapunov
maximum of the Kolmogorov-Sinai entroplys occurs at exponents \iamshes for the reasons given above, so the cor-
aboutd/ o= 0.4. Recall that, in the case of simple fluid, eachrespondingsy; has no meaning, since Gram-Schmidt or-
of hxs and\; has a single maximum as a function of the thogonalization has no ordering effect on the directions of
density and the maximum diys is shifted toward lower their tangent vectors. _ .
density with respect to the location of the maximum Xqr When the system has low anisotropy-dependent density,
Such behaviors ok, and hgg for simple fluid systems are only a small portion of the mean-squared length dfis

also reflected in the diatomic molecular system by identify-contributed from the momentum space. However this value
ing the anisotropy-dependent density of diatomic molecularises rapidly agp, increases. This means that the instability
fluid with the number density of simple fluitsee Fig. 5. of the phase-space trajectory is accumulated in the momen-
One of the important future works will be to verify whether tum space in high density regions. Furthermore, the contri-
the minor irregularity in the detailed structure can disappeabution from the angular momentum space increases more
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FIG. 7. Mean-squared values of the projection of a tangent vec-

tor 31 to the TPy and TP, subspaces as functions dfo for
various number densities.

However we have to note that the values RfpkgT are

slightly different than each other for a pair of systems that
have the samp, . These discrepancies seem to be partly due
to the difference between the number of molecules used in
the calculation of thermodynamic pressure and that used in
the calculation of Lyapunov exponents. Figure 7 shows the

behaviors of the squared length &f contributed from trans-
lational momentum space and angular momentum space as a
function of the bond length for various number densities.
The contribution from the translational momentum space is
sensitive to the number density and seems to be saturated

FIG. 6. Mean-squared values of the projection of tangent vecreaching a certain maximum value as the anisotropy-
tors & to the TX subspace(a) p,=0.36 [d=0.2p* =0.3), (b) p, dependent density increases. On the other hand, the contri-
=0.36 [@=0.8p*=0.2), (c) p,=0.60 d=0.5p*=0.4), (d) p, bution from the angular momentum space shows roughly
=0.60 [d=1.0p*=0.3), (e) p,=0.80 @=0.6p*=0.5), and(f)  linear behavior with bond length and is insensitive to the
pa=0.80 d=1.0p*=0.4). number density.

<52X,1>
<8 x>

50 100 160 210 260 320 ’ 50 100 160 210 260 320
I i

rapidly than the contribution from the translational momen- IV. CONCLUSIONS
tum space. Figure 6 shows this trend clearly.

The two states that have the same anisotropy-dependenﬁ
density present different dynamics at molecular level deP

penin, o I wond e e e umber senstes: o e specaof Lyapuno exponens, e Koimogoror
T, ] Sinai entropy, and the associated tangent space vectors as a
space(dx ) (X=Q, Pq, Q or Pg) are compared with two  fynction of anisotropy-dependent density indicate that the
systems having the same anisotropy-dependent density bi{ajor contributions to the instability of the phase-space tra-
having the different bond length and the number density. Fofectory come from the translational degrees of freedom and,
the systems with relatively low,, the contribution o(ﬁfm in particular, from the translational momentum variables.
to the instability of the phase-space trajectory is larger thahis is in contrast to the case of two-dimensional diatomic

that of (3p_ |} in relatively low p, and the difference be- molecular fluid, in which the major contribution to instability
Q-

tween these two contributions is larger for the systems witlfOmes from .the angular—momgntum vgnatﬂéé]. Figure 6. .
smalld as can be seen from the comparisons between Fig hows that, in general, the major contribution to the positive

6(a) and Gb). As p, increases, this difference decreases a yapunov exponent_s, Wh.iCh comes from the translatipnal
can be seen in Fias © and éd) and for the case o center-of-mass configuration space and the angular orienta-
B [} a

_ L2 2 2\ tion space, reduces considerably as the anisotropy-dependent
0.8, the contribution 0(5P9> larger than that of5;,) in density increases but these contributions change quantita-

the system withd=1.0[compare Figs. @) and @f)]. Itis a  tively as bond length becomes different even at the same
common feature for diatomic molecular fluid and simple gnjisotropy-dependent densityig. 6&)].

fluid thatP/pkgT and the instability accumulated in the mo-  Figure 7 shows that the contribution of instability from
mentum space(@,%qﬁﬂé,%ﬂvﬁ) increases ap, increases. the translational momentum space is sensitive to both the

In this paper, we studied the instability properties of
ase-space trajectories for a three-dimensional fluid com-
osed of rigid diatomic molecules. Detailed numerical stud-
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number density and the bond length of the moleculestional to each other. Our numerical method, which uses two

whereas the contribution of instability from the angular mo-coordinates representations to avoid the singularity occurring

mentum space seems to be dependent on only the bond the equations of motion combined with the adaptive

length of the molecules. Runge-Kutta-Fehlberg method of order four, proves that it
The maximum of the largest Lyapunov exponaitoc-  gives sufficiently accurate numerical results for the

curs arouncgp,=0.75, whereas the location of the maximum | yapunov instability study of the three-dimensional rigid di-

of the Kolmogorov-Sinai entropyks is nearp,=0.7. Al-  gtomic molecular system.

though, for practical reasons, the systems contain only 32

particles, the influence of the fluid-solid phase transition on

the Lyapunov instability and the Kolmogorov-Sinai entropy ACKNOWLEDGMENTS
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